Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Сначала рассчитай, а потом собирай. гидравлический расчет системы отопления

Расчетная часть

Расчет диаметра начинается с использования формулы равномерного движения жидкости (уравнение неразрывности):

q = v*ω,

где q — расчетный расход

v — экономическая скорость течения.

ω — площадь поперечного сечения круглой трубы с диаметром d.

Рассчитывается по формуле:

ω = πd² / 4,

где d — внутренний диаметр

отсюда d = √4*q/ v*π

Скорость движения жидкости в трубопроводе принимается равной 1,5-2,5 м/с. Это то значение, которое соответствует оптимальной работе линейной системы.

Потери напора (давления) в напорном трубопроводе находят по формуле Дарси:

h = λ*( L/ d)*( v2/2g),

Как проводится гидравлический расчет

где g — ускорение свободного падения,

L — длина участка трубы,

v2/2g — параметр, обозначающий скоростной (динамический) напор,

λ — коэффициент гидравлического сопротивления, зависит от режима движения жидкости и степени шероховатости стенок трубы. Шероховатость подразумевает неровность, дефект внутренней поверхности трубопровода и подразделяется на абсолютную и относительную. Абсолютная шероховатость — это высота неровностей. Относительную шероховатость можно рассчитать по формуле:

ε = е/r.

Шероховатость различна по форме и неравномерна по длине трубы. В связи с этим в расчетах принимается усредненная шероховатость k1 — поправочный коэффициент. Данная величина зависит от целого ряда моментов: материал труб, длительность эксплуатации системы, различные дефекты в виде коррозии и др. При стальном исполнении трубопровода значение применяется равным 0,1-0,2 мм. В то же время, в иных ситуациях параметр k1 можно взять из таблиц Ф.А.Шевелькова.

В том случае, если длина магистрали невысока, то местные потери напора (давления) в примерно одинаковы потерям напора по длине труб. Общие потери определяются по формуле:

h = P/ρ*g, где

ρ — плотность среды

Случаются ситуации, когда трубопровод пересекает какое-либо препятствие, например, водные объекты, дороги и др. Тогда используются дюкеры — сооружения, представляющие собой короткие трубы, прокладываемые под преградой. Здесь тоже наблюдается напор жидкости. Диаметр дюкеров находится по формуле (с учетом, что скорость течения жидкости составляет более 1 м/сек):

h = λ*( L/ d)*( v2/2g),

h = I*L+ Σζ* v2/2g

ζ — коэффициент местного сопротивления

Разность отметок лотков труб в начале и конце дюкера принимается равной потерям напора.

Материал для гидравлических трубопроводов

Местные сопротивления рассчитываются по формуле:

hм = ζ* v2/2g.

Движения жидкости бывают ламинарные и турбулентные. Коэффициент hм зависит от турбулентности потока (число Рейнольдса Re). С увеличением турбулентности создаются дополнительные завихрения жидкости, за счет чего величина коэффициента гидравлического сопротивления увеличивается. При Re › 3000 всегда наблюдается турбулентный режим.

Коэффициент гидравлического сопротивления при ламинарном режиме, когда Re ‹ 2300, рассчитывается по формуле:

λ = 64/ Re

В случае квадратичности турбулентного потока ζ будет зависеть от архитектуры линейного объекта: угла изгиба колена, степенью открытия задвижки, наличием обратного клапана. Для выхода из трубы ζ равна 1. Длинные трубопроводы имеют местные сопротивления порядка 10-15% на трение hтр. Тогда полные потери:

Н = hтр + Σ hтр ≈ 1,15 hтр

Производя расчеты, выбирается насос, исходя из параметров подачи, напора, действительной производительности.

Выбор и расчет диаметра трубы для водопровода

В устройстве трубопровода важно правильно подобрать диаметры водопроводных труб. Потому что от этого будет зависеть объем подачи воды

Многие сталкиваются с тем, что при плохом напоре функционирование бытовой техники осложняется. Поэтому важно учитывать многие факторы, которые в совокупности влияют на общую работу системы.

Характеристики водопроводных труб

При монтаже водопроводных сетей важно знать основные характеристики трубных изделий. Большое значение имеют материалы изготовления и диаметры водопроводных труб

Материал изготовления

Чтобы определиться, из какого лучше материала выбрать трубы, нужно знать специфику их использования. Трубы для водопровода производят из полипропилена и металла (сталь, чугун, медь).

Наружные и внутренние диаметры пластиковых труб для водопровода имеют разницу, отличную от тех же параметров труб металлических

Это очень важно учитывать при расчетах

Данная разница является показателем толщины и прочности стенок труб. А это напрямую влияет на период эксплуатации.

Преимущества стальных труб – прочность и надежность. К их недостаткам относят подверженность коррозии, большой вес, образование налета на стенках.

Пластиковый аналог имеет больше преимуществ, благодаря которым его чаще выбирают:

  • небольшой вес;
  • не подвергается коррозии;
  • прост и удобен монтаж;
  • пластичен;
  • относительно недорогой.

Однако и здесь есть недостаток. При перепаде температур подвергается линейному расширению. Металлопластиковый трубопровод решает эту проблему. К тому же, он прочный и надежный.

Поэтому очень важно знать все вышеперечисленные характеристики. Длина водопровода

Длина водопровода

Показатель средней скорости потока – 0,02 км/с. Учитывая этот показатель и длину водопроводных коммуникаций можно подобрать диаметр труб:

  • при длине менее 10 м – 20 мм;
  • при длине меньше 30 м – 25 мм;
  • при длине большей 30 м – 32 мм.

Для стояка диаметр должен быть не менее 20-25 мм. Для водопроводной трубы – 10-15 мм.

Диаметр как основной параметр водопроводной системы

Главной характеристикой водопроводных труб является их размер, который и есть их диаметром.

Измеряют как наружный и внутренний показатель. Необходимо знать толщину стенок, так как с помощью этого параметра высчитывается внутренний размер.

Важно помнить, что от правильного выбора диаметра будет зависеть пропускная способность водоснабжения и качество подачи питьевой воды населению. Выбирая диаметры водопроводных труб при строительстве и ремонте коммуникационных систем в частном доме или высотном, обязательно учитывайте разницу между наружным и внутренним размером

Если его неправильно подобрать, могут выйти из строя сантехнические устройства

Выбирая диаметры водопроводных труб при строительстве и ремонте коммуникационных систем в частном доме или высотном, обязательно учитывайте разницу между наружным и внутренним размером. Если его неправильно подобрать, могут выйти из строя сантехнические устройства.

Таблицы диаметров

При монтаже трубопровода из разнородных материалов, следует учитывать некоторые особенности.

Например, на изделиях из стали и чугуна указывается наружный диаметр и толщина стенки водопроводной трубы в мм.

Если нужно соединить трубы из стали и пластика, применяются специальные фитинги. Они оснащены с одного края металлической резьбой.

Таблица диаметров стальных водопроводных труб

Таблица размеров для медных материалов

Особенностью маркировки изделий из меди, является указание наружного размера в дюймах. Поэтому необходимо знать, что 1» (дюйм) = 25,4 мм.

Таблица диаметров пластиковых труб для водопровода

На пластиковых трубах встречается обозначение наружного размера в дюймах и миллиметрах. Это зависит от производителя.

Как рассчитать диаметр трубы водопровода

Подберите диаметр по готовым таблицам, в них указаны усредненные данные.

При этом важно учитывать, если водопровод длинный, на нем встречается много поворотов и стыков. В этом случае выбирайте больший диаметр

Также можно воспользоваться специальными формулами, которые помогут как можно точнее рассчитать диаметр трубы водопровода.

В случае, если самостоятельно не получается рассчитать, можно обратиться к специалистам в этой области. Они помогут сделать это правильно.

Точный выбор диаметра – процедура, которая требует внимания и серьезного подхода.

Как рассчитать расход воды по сечению трубы?

При проектировании инженерных коммуникаций, таких как отопление, водоснабжение и канализация, необходимо учитывать принятые нормы, приведенные в соответствующей документации.

Расчет расхода воды по сечению трубы – довольно сложный инженерный процесс, требующий специальных знаний. Но в случаях, когда индивидуальное строительство ведется собственными силами, без привлечения строительных фирм, многие расчеты приходится делать самостоятельно.

Чем больший объем воды проходит через трубу в единицу времени, тем больше получается расход. Существует довольно много критериев, которые влияют на этот показатель. Основные из них следующие:

  • диаметр внутреннего сечения;
  • материал, из которого изготовлен водопровод;
  • скорость течения жидкости, которая, в свою очередь, зависит от давления;
  • наличие поворотов и затворов в водопроводной системе.

Однако размер сечения трубы действительно достаточно сильно влияет на расход воды в трубопроводе. Если пренебречь дополнительными факторами, можно предложить для расчета следующую формулу:

где q – расход воды, л/с;

d – диаметр внутреннего сечения трубы, см;

V – скорость течения воды, м/с.

Если питание системы водоснабжения осуществляется из водонапорной башни, без дополнительного нагнетания с помощью насоса, то скорость течения будет в пределах примерно от 0,7 до 1,9 м/с. Если же используется какой-либо нагнетатель, то в его паспорте должно указываться создаваемое давление и скорость прохождения жидкости.

В дополнение к вышеприведенной формуле отметим, что довольно большое влияние на производительность трубопровода оказывает сопротивление внутренних стенок. Пластиковые трубы имеют более гладкую поверхность, чем стальные, поэтому коэффициент сопротивления в них ниже. К тому же они не подвержены коррозии, что тоже положительно влияет на их пропускную способность.

Коэффициенты некоторых местных сопротивлений z.

Табл. 6

Вид местного сопротивления

Схема

Коэффициент местного сопротивления z

Внезапное расширение

(1 – S1/S2)2, S1 = πd2/4, S2 = πD2/4.

Выход из трубы в резервуар больших размеров

1

Постепенное расширение (диффузор)

  1. Если a<8.

0.15 – 0.2 ((1 – (S1/S2)2)

  1. Если 80.

sin α (1 – S1/S2)2

  1. Если a>30

(1 – S1/S2)2

Вход в трубу:

С острыми краями

0.5

С закругленными краями

0.2-0.1 (в зависимости от радиуса закругления)

С выступающими острыми краями

1

В виде конического патрубка

0.15

Внезапное сужение:

ζ/ɛп + (1/ ɛп – 1)2. z=0.005-0б06

eп= 0.62-0.63 (вход с острыми краями)

eп=0.7-0.99 (вход с закругленными краями.

По данным ЦАГИ коэффициент местного сопротивления при внезапном сужении определяется зависимостью:

0.5 (1- S1/S2)

1 — S1/S2

Поворот струи

Закругление

0.14-0.3  (d/r =0.4-1 при j=90)

z×j/90 (при j¹90)

Прямое колено

1-1.5

Постепенное сужение (конфузор)

0.005-0.06 (a<5)

0.16-0.24 (7 < <30)

Вентили и задвижки (при полном открытии)

Обыкновенный проходной вентиль

3-5.5

Задвижка

0.12

Диафрагма

(1 + 0.707/(1- S1/S2))2*( S1/S2 – 1)2

Коэффициент сопротивления диафрагмы можно также определить в зависимости от отношения площади поперечного сечения трубы Sк площади отверстия диафрагмы S1.

Обзор программ для гидравлических вычислений

По существу любой гидравлический расчет систем водяного отопления считается непростой инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые облегчают выполнение такой процедуры.

Можно попытаться выполнить гидравлический расчет системы обогрева в оболочке Excel, воспользовавшись уже готовыми формулами. Однако при этом возможно появление следующих проблем:

  • Большая погрешность. Во многих случаях как пример гидравлического расчета системы для отопления берутся с одной или двумя трубами схемы. Найти такие же вычисления для коллекторной проблематично;
  • Для правильного учета сопротивления в плане гидравлики трубопровода нужны справочные данные, которые отсутствуют в форме. Их необходимо искать и вводить дополнительно.

Oventrop CO

Наиболее простая и ясная программа для гидравлического расчета теплосети. Интуитивный интерфейс и гибкая настройка смогут помочь быстро разобраться с невидимыми моментами ввода данных. Маленькие проблемы могут появиться при первой настройке комплекса. Потребуется ввести все параметры системы, начиная от самого материала труб и завершая размещением ТЕНОВ.

Отличается гибкостью настроек, возможностью делать самый простой гидравлический расчет теплоснабжения как для новой теплосети, так же и для модернизации старой. Выделяется от заменителей хорошим графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитывается для профессионального сопротивления в плане гидравлики теплосети. Бесплатная версия имеет очень много противопоказаний. Сфера использования – проектирование теплоснабжения в больших общественных и производственных зданиях.

В практических условиях для теплоснабжения автономного типа частных квартир и домов гидравлический расчет делается не всегда. Однако это способно привести к ухудшению работы системы обогрева и быстрой поломке его компонентов – отопительных приборов, труб и котла. Что этого избежать нужно вовремя высчитать параметры системы и сопоставить их с фактическими для последующей оптимизации работы теплоснабжения.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Момент инерции квадратной трубы

ТРУБЫ СТАЛЬНЫЕ КВАДРАТНЫЕ

Square steel tubes. Range

ТРУБЫ СТАЛЬНЫЕ КВАДРАТНЫЕ

Square steel tubes. Range

Дата введения 01.01.83

1. Настоящий стандарт распространяется на стальные бесшовные горячедеформированные и холоднодеформированные, электросварные и электросварные холоднодеформированные трубы.

(Измененная редакция, Изм. № 1).

2. Форма и размеры квадратных труб должны соответствовать указанным на чертеже и в табл.1.

Примеры условных обозначений

Трубы наружным размером 40 мм, толщиной стенки 3 мм, длиной, кратной 1250 мм, из стали марки 10, группы В ГОСТ 13663-86:

То же, мерной длиной 6000 мм:

То же, немерной длины:

3. Трубы наружными размерами от 10 до 120 мм толщиной стенки от 1,0 до 8,0 мм изготовляют холоднодеформированными, трубы наружными размерами от 60 до 180 мм толщиной стенки от 4,0 до 14,0 мм изготовляют горячедеформированными, трубы наружными размерами от 10 до 100 мм толщиной стенки от 1,0 до 5,0 мм изготовляют электросварными.

2, 3. (Измененная редакция, Изм. № 1).

4. Радиус закругления R должен быть не более 2 s.

По согласованию изготовителя с потребителем радиус закругления должен быть не более 1,5 s, для электросварных труб размером 60 × 60 × 4 мм — не более 3 s.

5. Трубы изготовляют:

  • бесшовные горячедеформированные — от 4 до 12,5 м,
  • бесшовные холоднодеформированные и электросварные — от 1,5 до 9 м,
  • бесшовные горячедеформированные — от 4 до 12,5 м,
  • бесшовные холоднодеформированные — от 4,5 до 11 м,
  • электросварные — от 5 до 9м.

Предельное отклонение на общую длину +100 мм,

длины кратно и мерной

  • бесшовные горячедеформированные — от 4 до 12,5 м с припуском на каждый рез по 5 мм,
  • бесшовные холоднодеформированные — от 1,5 до 11 м с припуском ни каждый рез по 5 мм,
  • электросварные — любой кратности, не превышающей нижнего предела, установленного для мерных труб.

Общая длина кратных труб не должна превышать верхнего предела мерных труб. Припуск для каждой кратности устанавливается по 5 мм (если другой припуск не оговорен в заказе) и входит в каждую заказываемую кратность.

(Измененная редакция, Изм. № 1, 3).

6. Предельные отклонения по наружным размерам, толщине стенки и вогнутости сторон не должны превышать указанных в табл. 2.

при точности изготовления

(Измененная редакция, Изм. № 1).

7. Разностенность не должна выводить стенку за предельные отклонения по толщине стенки.

8. В поперечном сечении трубы отклонение от прямого угла не должно превышать ±1,5°.

9. Кривизна труб не должна превышать 2 мм на 1м длины. По требованию потребителя трубы изготовляют без правки, при этом нормы по кривизне не регламентируются.

11. Технические требования должны соответствовать ГОСТ 13663.

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 14.04.82 № 1529

3. ВЗАМЕН ГОСТ 8639-68

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

5. Ограничение срока действия снято Постановлением Госстандарта от 07.09.92 № 1125

6. ИЗДАНИЕ (декабрь 2005 г.) с изменениями 1, 2, 3, утвержденными в июне 1987 г., ноябре 1989 г., сентябре 1992 г. (ИУС 10-87, 2-90, 12-92)

Расчетные значения для квадратных профильных труб

В таблицах 1.1-1.3 приведены расчетные значения для квадратных профильных труб, точнее — для профилей стальных гнутых замкнутых сварных квадратного сечения согласно ГОСТ 30245-2003. Профили изготавливаются на специализированных станах путем формирования круглого трубчатого сечения с продольным сварным швом и последующим обжатием валками в квадратный профиль.

Рисунок 1. Поперечное сечение квадратной профильной трубы (стального гнутого замкнутого профиля сварного квадратного).

Таблица 1.1. Квадратные профильные трубы высотой 40-90 мм

Таблица 1.2. Квадратные профильные трубы высотой 100-160 мм

Таблица 1.3. Квадратные профильные трубы высотой 180-300 мм

Таблица 2.1. Квадратные профильные трубы высотой 10-50 мм (согласно ГОСТ 8639-82)

Таблица 2.1. Квадратные профильные трубы высотой 60-180 мм (согласно ГОСТ 8639-82)

1. Условные обозначения: h — высота профиля, b — ширина профиля, F — площадь поперечного сечения, R — радиус наружного закругления угла, I — момент инерции, W — момент сопротивления, i — радиус инерции.

2. Радиус наружного закругления угла R = 2,0t при t ≤ 6,0 мм, R = 2,5t при 6,0 10,0 мм.

3. Масса 1 м длины профиля определена по площади поперечного сечения, при плотности стали 7,85 г/см 3 .

Момент инерции квадратной трубы Момент инерции квадратной трубы ТРУБЫ СТАЛЬНЫЕ КВАДРАТНЫЕ Square steel tubes. Range ТРУБЫ СТАЛЬНЫЕ КВАДРАТНЫЕ Square steel tubes. Range Дата введения 01.01.83 1 . Настоящий

Этапы расчета

Рассчитать параметры отопления дома необходимо в несколько этапов:

  • расчет теплопотерь дома;
  • подбор температурного режима;
  • подбор отопительных радиаторов по мощности;
  • гидравлический расчет системы;
  • выбор котла.

Таблица поможет вам понять, какой мощности радиатор нужен для вашего помещения.

Расчет теплопотерь

Теплотехническая часть расчета выполняется на базе следующих исходных данных:

  • удельная теплопроводность всех материалов, используемых при строительстве частного дома;
  • геометрические размеры всех элементов здания.

Тепловая нагрузка на отопительную систему в данном случае определяется по формуле:
Мк = 1,2 х Тп, где

Тп — суммарные теплопотери постройки;

Мк — мощность котла;

1,2 — коэффициент запаса (20%).

При индивидуальной застройке расчет отопления можно произвести по упрощенной методике: суммарную площадь помещений (включая коридоры и прочие нежилые помещения) умножить на удельную климатическую мощность, и полученное произведение разделить на 10.

Значение удельной климатической мощности зависит от места строительства и равняется:

  • для центральных районов России — 1,2 — 1,5 кВт;
  • для юга страны — 0,7 — 0,9 кВт;
  • для севера — 1,5 — 2,0 кВт.

Упрощенная методика позволяет рассчитать отопление, не прибегая к дорогостоящей помощи проектных организаций.

Температурный режим и подбор радиаторов

Режим определяется исходя из температуры теплоносителя (чаще всего им является вода) на выходе из отопительного котла, воды, возвращенной в котел, а также температуры воздуха внутри помещений.

Оптимальным режимом, согласно европейским нормам, является соотношение 75/65/20.

Для подбора отопительных радиаторов до их монтажа следует предварительно рассчитать объем каждого помещения. Для каждого региона нашей страны установлено необходимое количество тепловой энергии на один кубометр помещения. Например, для европейской части страны этот показатель равен 40 Вт.

Для определения количества тепла для конкретного помещения, надо ее удельную величину умножить на кубатуру и полученный результат увеличить на 20% (умножить на 1,2). На основании полученной цифры рассчитывается необходимое количество отопительных приборов. Производитель указывает их мощность.

К примеру, каждое ребро стандартного алюминиевого радиатора имеет мощность 150 Вт (при температуре теплоносителя 70°С). Чтобы определить нужное количество радиаторов, надо величину необходимой тепловой энергии разделить на мощность одного отопительного элемента.

Гидравлический расчет

Для гидравлического расчета существуют специальные программы.

Одним из затратных этапов строительства является монтаж трубопровода. Гидравлический расчет системы отопления частного дома нужен для определения диаметров труб, объема расширительного бака и правильного подбора циркуляционного насоса. Результатом гидравлического расчета являются следующие параметры:

  • Расход теплоносителя в целом;
  • Потери напора теплового носителя в системе;
  • Потери напора от насоса (котла) до каждого отопительного прибора.

Как определить расход теплоносителя? Для этого необходимо перемножить его удельную теплоемкость (для воды этот показатель равен 4,19 кДж/кг*град.С) и разность температур на выходе и входе, затем суммарную мощность системы отопления разделить на полученный результат.

Диаметр трубы подбирается исходя из следующего условия: скорость воды в трубопроводе не должна превышать 1,5 м/с. В противном случае система будет шуметь. Но есть и ограничение нижнего предела скорости — 0,25 м/с. Монтаж трубопровода требует оценки данных параметров.

Если этим условием пренебречь, то может произойти завоздушивание труб. При правильно подобранных сечениях для функционирования системы отопления бывает достаточно циркуляционного насоса, встроенного в котел.

Потери напора для каждого участка рассчитываются как произведение удельной потери на трение (указывается производителем труб) и длины участка трубопровода. В заводских характеристиках они также указываются для каждого фитинга.

Выбор котла и немного экономики

Котел выбирается в зависимости от степени доступности того или иного вида топлива. Если к дому подведен газ, нет смысла приобретать твердотопливный или электрический. Если нужна организация горячего водоснабжения, то котел выбирают не по мощности отопления: в таких случаях выбирают монтаж двухконтурных устройств мощностью не менее 23 кВт. При меньшей производительности они обеспечат лишь одну точку водоразбора.

Оптимальные диаметр трубопровода и средняя скорость

С увеличением диаметра возрастают капитальные затраты (точнее – амортизационные). Кривая К. С увеличением диаметра при заданном расходе снижается средняя скорость потока, а с ней и энергия, затрачиваемая на преодоление гидравлического сопротивления. Эксплутационным (прежде всего энергетическим) затратам отвечает кривая Э. Оптимальным является диаметр трубопровода, при котором суммарные затраты (кривая  ) минимальны.

Диаметр трубопровода, мм Рекомендуемая предельная скорость, м/с Рекомендуемый предельный расход, л/с
50 0,96 1,88
100 1,15 9,03
200 1,34 42,1
500 1,45 284
1000 1,68 1280

Обзор программ для гидравлических вычислений

Прежде всего, с целью упрощения гидравлического расчета внутридомовых систем теплоснабжения лучше обратиться к узкоспециализированным программам. Но их не очень много, хотя выбрать всё же есть из чего. Некоторые из них бесплатные, а иные – в демо вариантах.

Наиболее популярные программы для расчета гидравлики отопительной сети:

  1. «Oventrop CO» – ПО вполне справится с расчетами для загородного домовладения для однотрубной/двухтрубной системы. У нее широкий потенциал: от выбора Ду труб до выполнения анализов расхода теплоносителя. Все итоги можно перевести в Виндовс, работает программа бесплатно.
  2. «Instal-Therm HCR» способна рассчитать схему радиаторного и наружного теплоснабжения. В нее включены еще 3 ПО: San для любой воды, Heat&Energy – для определения потерь тепла и Scan – для анализа схем отопления. Распространяется бесплатно в виде пробной версии.
  3. «HERZ C.O.» – бесплатное ПО для гидравлического расчёта одно и двухтрубной схемы теплоснабжения, как для новых, так и для отремонтированных помещениях, с водяным и гликолиевым теплоносителем. Программа обладает свидетельство качества ООО ЦСПС.

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.


Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на “обратку” – меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

V = (0,86*W*k)/t-to,

где:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации